This vignette summarizes the
functions in the PPQplan
package, and provides some
examples to illustrates how to use the package.
Note: in order to better perform the dynamic plots, it is recommended to run the following code in RStudio.
## ℹ Loading PPQplan
This package provides several S3 functions listed as follows:
rl_pp
: calculates probability of pass the specification
test.Example: Consider some sterile concentration assay as a CQA, the lower and upper specification limits are 95% and 105%, if the hypothetical mean and standard deviation are 98% and 1%, then the probability of passing the specification test will be calculated as follow.
## [1] 0.9986501
PPQ_pp
PPQ_occurve
PPQ_ctplot
PPQ_ggplot
For the above example, assume the PPQ study reports a sample of 10 assay results per batch, test only one batch. Then a general multiplier for constructing 95% two-sided prediction interval can be calculated as k = 2.373.
PPQ_pp
: calculates the probability of passing some
critical quality attributes (CQA) PPQ test using a general constant
multiplier k
.## [1] 0.8604419
Comparing different scenarios for hypothetical mean and standard deviation:
sigma <- seq(0.1, 4, 0.1)
pp1 <- sapply(X=sigma, FUN = PPQ_pp, mu=97, n=10, Llim=95, Ulim=105, k=2.373)
pp2 <- sapply(X=sigma, FUN = PPQ_pp, mu=98, n=10, Llim=95, Ulim=105, k=2.373)
pp3 <- sapply(X=sigma, FUN = PPQ_pp, mu=99, n=10, Llim=95, Ulim=105, k=2.373)
pp4 <- sapply(X=sigma, FUN = PPQ_pp, mu=100, n=10, Llim=95, Ulim=105, k=2.373)
plot(sigma, pp1, xlab="Standard Deviation", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(sigma, pp2, type="o", pch=2, col=2)
lines(sigma, pp3, type="o", pch=3, col=3)
lines(sigma, pp4, type="o", pch=4, col=4)
legend("topright", legend=paste0(rep("mu=",4),c(97,98,99,100)), bg="white",
col=c(1,2,3,4), pch=c(1,2,3,4), lty=1, cex=0.8)
mu <- seq(95, 105, 0.1)
pp5 <- sapply(X=mu, FUN = PPQ_pp, sigma=0.5, n=10, Llim=95, Ulim=105, k=2.373)
pp6 <- sapply(X=mu, FUN = PPQ_pp, sigma=1, n=10, Llim=95, Ulim=105, k=2.373)
pp7 <- sapply(X=mu, FUN = PPQ_pp, sigma=1.5, n=10, Llim=95, Ulim=105, k=2.373)
pp8 <- sapply(X=mu, FUN = PPQ_pp, sigma=2, n=10, Llim=95, Ulim=105, k=2.373)
pp9 <- sapply(X=mu, FUN = PPQ_pp, sigma=2.5, n=10, Llim=95, Ulim=105, k=2.373)
plot(mu, pp5, xlab="Mean Value", main="LSL=95, USL=105, k=2.373, n=10",
ylab="Probability of Passing", type="o", pch=1, col=1, lwd=1, ylim=c(0,1))
lines(mu, pp6, type="o", pch=2, col=2)
lines(mu, pp7, type="o", pch=3, col=3)
lines(mu, pp8, type="o", pch=4, col=4)
lines(mu, pp9, type="o", pch=5, col=5)
legend("topright", legend=paste0(rep("sigma=",5),seq(0.5,2.5,0.5)), bg="white",
col=c(1,2,3,4,5), pch=c(1,2,3,4,5), lty=1, cex=0.8)
PPQ_occurve
: plots OC curves for specification test and
PPQ plan, with the options of customizing CQA name, unit, number of
batch, optimizing the plans, etc.PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, mu=98, sigma=seq(0.1, 10, 0.1), n=10, k=2.373)
The function can also optimize the baseline and high performance
sampling plan1 by using add.reference
option.
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, mu=98, sigma=seq(0.1, 10, 0.1), n=10, k=2.373, add.reference=TRUE)
We can also optimize and show the Baseline and High performance reference lines only:
PPQ_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC", Llim=95, Ulim=105, mu=98, sigma=seq(0.1, 10, 0.1), n=10, add.reference=TRUE)
Since k = 2.373 is between 1.798 (baseline) and 2.945 (high performance), the 95% confidence interval is suitable for this PPQ plan.
PPQ_ctplot
: Heatmap (or Contour Plot) for PPQ
assessment with parameter space.PPQ_ggplot
: Dynamic Heatmap (or Contour Plot) for PPQ
assessment with parameter space. mu <- seq(95, 105, 0.05)
sigma <- seq(0.1,1.75,0.05)
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, dynamic = FALSE)
PPQ_ggplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma, k=2.373, test.point = test, dynamic = FALSE)
Plot a dynamic heat map. User can hover on the plot to interactively
evaluate the plan with dynamic = TRUE
option.
pi_pp
pi_occurve
pi_ctplot
pi_pp
: calculates the probability of passing the PPQ
test using prediction interval with confidence level 100 × 1 − α.Use the same example with alpha=0.05
option.
## [1] 0.8606111
pi_occurve
: plots OC curves for specification test and
PPQ plan, with the options of customizing CQA name, unit, number of
batch, optimizing the plans, etc. pi_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%LC",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti_pp
ti_occurve
ti_ctplot
ti_pp
: calculates the probability of passing the PPQ
test using one-sided or two-sided tolerance interval with confidence
level 100 × 1 − α.Use the same example with alpha=0.05
option.
## [1] 0.9942658
## [1] 0.6185582
ti_occurve
: plots OC curves for specification test and
PPQ plan, with the options of customizing CQA name, unit, number of
batch, optimizing the plans, etc. ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=97, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=100, sigma=seq(0.1, 10, 0.1), Llim=95, Ulim=105, n=10, add.reference=TRUE)
ti_occurve(attr.name = "Sterile Concentration Assay", attr.unit="%",
mu=seq(95,105,0.1), sigma=1, Llim=95, Ulim=105, n=10, add.reference=TRUE)
Another example is test Extractable Volume using one-sided lower tolerance interval2.
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.675, side=1, NV=1)
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=1mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.78, side=1, NV=1)
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.97, side=1, NV=3)
ti_occurve(attr.name = "Extractable Volume", attr.unit = "% of NV=3mL", Llim = 100, Ulim = Inf, mu=102.5, sigma=seq(0.2, 6 ,0.05), n=40, alpha = 0.05, coverprob = 0.992, side=1, NV=3)
ti_ctplot
: Heatmap (or Contour Plot) for PPQ assessment
with parameter space.mu <- seq(95, 105, 0.05)
sigma <- seq(0.1,2.5,0.05)
ti_ctplot(attr.name = "Sterile Concentration Assay", attr.unit = "%LC", Llim=95, Ulim=105, mu = mu, sigma = sigma)
Also test the Extractable Volume using one-sided tolerance interval, for example, NV = 1mL with 95% / 67.5% one-sided lower tolerance interval.
pp
heatmap_ly
pp
: calculate the probability of passing general upper
and/or lower specification limit.## [1] 0.02568295
heatmap_ly
: plot a plain or dynamic heatmap (or contour
plot) for a general sampling plan with specification limit.Burdick, R. K., LeBlond, D. J., Pfahler, L. B., Quiroz, J., Sidor, L., Vukovinsky, K., & Zhang, L. (2017). Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry.↩︎
USP <1> https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q08_pf_31_1_2005.pdf.↩︎